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Considering a system of N identical interacting particles, which obey Fermi- 
Dirac or Bose-Einstein statistics, we derive new formulas for correlation 
functions of the type C(t)= (Z~_t At(t) ~ju= 1 Bj) (where Bj is diagonal in the 
free-particle states) in the thermodynamic limit. Thereby we apply and extend a 
superoperator formalism, recently developed for the derivation of long-time tails 
in semiclassical systems. As an illustrative application, the Boltzmann equation 
value of the time-integrated correlation function C(t) is derived in a straight- 
forward manner. Due to exchange effects, the obtained i-matrix and the 
resulting scattering cross section, which occurs in the Boltzmann collision 
operator, are now functionals of the Fermi-Dirac or Bose-Einstein distribution. 

KEY WORDS: Time correlation functions; Liouville operators; cluster 
expansion; exchange effects. 

1. I N T R O D U C T I O N  

In our  previous work on long time tails (1) (hereafter referred to as I), we 
presented a new microscopic evaluation method  for time correlation 
functions, in part icular  for the m o m e n t u m  autocorrela t ion function 
associated with self-diffusion processes. Using the superoperator  formalism, 
in part icular  Liouville operators  and projectors, we investigated the long- 
time behavior  of  the autocorrela t ion function for a fluid whose identical 
particles interact with a translationally invariant and short-range repulsive 
potential (with no bound  states). Thereby the dynamics of the system is 
treated quan tum mechanically, whereas the particles are assumed to obey 
classical, i.e., Bol tzmann statistics. By introducing a new concept, the 
Pq-rule and the Pq-singularity (the latter being a generalization of  van 
Hove's  diagonal  singularity(2)), we systematically discussed the various 
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766 Loss and Schoeller 

terms occurring in the cluster expansion (density expansion) of the 
autocorrelation function in the thermodynamic and long-time limit. By 
resumming a first class of divergent terms (due to "uncorrelated binary 
collisions") and then a second one (due to "ring events"(3)), we obtained 
the same long-time tails for this semiclassical system as the ones first 
derived by Dorfman and Cohen (4'5) (see ref. 5 for a bibliography) for a 
purely classical system of hard-sphere (disk) molecules. 

It is the objective of the present paper to start an analogous analysis 
for the more general case, where the N interacting particles obey 
Fermi-Dirac or Bose-Einstein statistics. In particular, the central quantity 
of interest here is a time correlation function of the type C(t)= 
(~i=N 1 Ai(t) ~Nj= 1 Bj), as occurs, for instance, in the Green-Kubo 
formulas for transport coefficients obtained by linear response theory. ~6) 
Introducing new projectors (/v and Q) and using cluster expansion 
techniques and the Pq-rule extensively discussed in I, we derive here new 
inversion formulas [see Eqs. (3.44) and (3.45), respectively] for the Laplace 
transform of the correlation function C(e) which are valid in the 
thermodynamic limit and hold for all e>0. These formulas, being a 
generalization of the formula (3.60) derived in I, are especially suited for 
the evaluation of the correlation function in the long-time limit. This is 
because a certain class of divergences, which occurs in the naive cluster 
expansion, has been eliminated by the help of the projectors P and 0 (in 
the same way as was done in I and ref. 7). Therefore, these formulas can be 
regarded as a first step in the investigation of the long-time behavior of 
C(t) for low-temperature N-particle systems, where degeneracy effects must 
be taken into account. In future work we intend to elaborate the next most 
singular terms on the basis of the present formalism. We note in this con- 
nection that these terms might not be given by the semiclassical ring terms, 
as the investigation of the Lorentz gas by Kirkpatrick and Dorfman ~8) 
suggests. 

Moreover, as in other studies ~9 14),2 directed at generalizing classical 
kinetic theories to normal quantum fluids, a further motivation for the 
present approach is to "provide a means to capitalize on the advanced state 
of classical kinetic theory, for quantum systems. ''~9) 

As a first straightforward application of the formalism developed here, 
the binary collision approximation of C(e) (for e ~ 0) is then considered. 
As result, the Boltzmann equation value of the time-integrated correlation 
function is obtained, where the linearized Boltzmann collision operator is 
given with the full quantum statistical scattering cross section, which differs 
from its semiclassical counterpart in that the former takes account of the 

2 For  the Brussels school  formal ism see ref. 14. 
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relative occupancy of the intermediate states ~9) and which, as a con- 
sequence, depends now on the Fermi-Dirac or Bose-Einstein distribution. 
Besides the demonstration of the utility of the inversion formulas, the 
presentation of this example also allows us to clearly exhibit the parallels 
and differences between the quantum statistical case treated here and the 
semiclassical case considered in I. 

We note that this generalized Boltzmann collision operator (which 
goes beyond the Born approximation) was first derived explicitly by 
Boercker and Dufty (9) within their formalism, being a quantum statistical 
generalization of the so-called algebraic approach. ~15~ Although in this 
algebraic approach an exact formal closure of the quantum statistical 
Bogoliubov-Born-Green-Kirkwood-Yvon (16) (BBGKY) hierarchy is 
accomplished in a simple way, the reduction of the obtained (super) 
operator expressions (with cluster expansions) to the generalized linear 
Boltzmann operator is a rather involved procedure. In contrast to this, by 
deducing the factorization formula (3.42), which corresponds to a closure 
of the BBGKY hierarchy, we arrive at a quite explicit form of the above- 
mentioned inversion formula, from which the generalized linear Boltzmann 
operator can be obtained systematically. In a subsequent paper, we shall 
derive the quantum statistical nonlinear Boltzmann equation (Uehling- 
Uhlenbeck equation (16) with degeneracy-modified t-matrix), and, in 
particular, its first correction, i.e., the quantum statistical version of the 
classical Choh-Uhlenbeck equationJ 18~ 

The work is organized as follows. In Section 2 the quantities of interest 
are defined and some technical tools (e.g., superoperators, phase-space 
representation, ~19) etc.) are provided. In Section 3, which represents the 
main part of this paper, we first discuss the naive cluster expansion 
together with the divergences occurring there. After the motivation for the 
choice of the new projectors P and Q, by which the new features 
introduced by the statistics are taken into account, the above-mentioned 
inversion formulas are derived. The section is concluded by some remarks, 
in particular on the reduced distribution operators, defined in the canonical 
and grand canonical ensemble. In this connection an exact formula for the 
Fermi-Dirac (Bose-Einstein) distribution in the canonical ensemble is 
given [see Eq.(3.55)]. In Section4, finally, the binary collision 
approximation and its consequences are discussed. 

2. S O M E  DEFIN IT IONS 

We consider a quantum mechanical N-particle system in a periodicity 
volume g2 at temperature T= (~ks)-l, where kB is Boltzmann's constant. 
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The N-particle Hamiltonian operator H of this system is given by 

N 
H = H o + V =  ~ H o ( i ) + ~  V o. (2.1) 

i=1  i < j  

with 

�9 -'2 Ho(t) = p,/2m (2.2) 

and 

Vtj = V ( [ x i -  xj]  ) ( 2 . 3 )  

where Pi is the momentum operator of the ith particle and m is its mass. V 
is a short-range pair-interaction potential with no bound states which 
depends only on the relative coordinates of the particles i and j, i.e., the 
system is translationally invariant. In the following we are concerned with 
a correlation function of the form 

N N 
C(t) = ~ (Ai(t)  Bj) = ~  Tr pA~(t) Bj (2.4) 

i , j  i , j  

i.e., the observables in which we are interested are represented by sums of 
single-particle operators Ai and Bj, respectively. In addition, we assume 
that B~ is diagonal in the eigenstates of Ho and that 

(A~) =0, l<<.i<~N (2.5) 

which can always be achieved by replacing Ai by A e = A i - ( A g ) .  Such 
correlation functions occur, e.g., in the kinetic part of transport coefficients 
(such as the shear viscosity or the thermal conductivity) or in forms of the 
fluctuation-dissipation theorem, (6'2~ etc. 

Furthermore, p is the canonical density matrix 

p =  ZNle  ~1~, Z N =  Tr e-~y4 (2.6) 

The Heisenberg operator Ai(t) is given by (we set h = 1) 

A i( t ) = eil4t A ie -i i t t= eiLt A i (2.7) 

where we have introduced the Liouville operator L defined by 

N N 

L = L o + L v =  ~ Lo(i)+ ~ Lij (2.8) 
i=1  i < j  
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with 

Lo(i)A = [H0(i), A] (2.9) 

L~A -- IVy, A] (2.10) 

and therefore LA = [H, A ], where A is an ordinary Hilbert-space operator. 
The Liouville operator belongs to the class of superoperators which are 
formally defined as linear operators acting on ordinary Hilbert-space 
operators (for more details about superoperators see, e.g., refs. 20 and 21). 

The trace, Tr, in Eq. (2.4) is to be taken over a complete set of 
symmetrized (antisymmetrized) states for bosons (fermions). These states 
may be chosen as eigenstates of the total momentum and are of the form 

N! ~1/2 
~ , t  zc [kl "-'kN> (2.11) 

Here, 

t k a . - - k N > = [ k l )  x ... x l k N ) ~ l k  ) (2.12) 

is the direct product of single-particle momentum eigenstates; rc denotes the 
projecting operator, which (anti)symmetrizes the product states: 

1 7[1 --" N l 

o" G SN 

7[~ Ik> = t/t~l Ik~(1).. "k.(N)) 

{~ for even permutations 
JaJ = for odd permutations 

l for bosons 
- 1 for fermions 

(2.13) 

(2.14) 

~ su denotes the sum over all permutations a of N particles, ni indicates 
the number of identical k-vectors of the sort i. For further reference we 
note that 7r l u  can be represented, e.g., in the form 

711 .--N = (1 + ~C12)(1 + 7113 + 7123) " ' "  (1  -~ 711N Jr- " ' "  ~- 7[N-- I N )  (2.15) 

with 

re0 Ikl . . . k i . . . k j . . - k u ) = q  [kl . . . k j . . . k i . .  "ku)  (2.14a) 

Since the state (2.11) remains unchanged under a permutation of the 
vectors ki (apart from the sign in the fermionic case), only those states of 
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the form (2.11) need to be considered in the trace in Eq. (2.4) whose sets 
{k 1,..., ku} are different. Equation (2.4) therefore reads 

U N! 
C(t) = ~  ~ - -  (kL ~zBj(pAi)(t) ~z Ik~ 

i,j {kl,. . ,kN} I~it ' l i] 
N 

= ~  ~ (k[Trnj(PAi)(t)z[ k )  
i,j ki,...,kN 

Finally, since rc~ = rt and therefore 

~ B ~ ( p ~ A ~ ) ( t ' n = ~ B j ( f ~ A i ) ( t )  
j i j 

with 

f =  pn =np (2.16) 

the correlation function (2.4) takes the form 

N N 

C ( t ) = ~  ~ ( k l B j ( f A i ) ( t ) [ k ) - ~ T r l . . u B j ( f A i ) ( t )  (2.17) 
i,j kl  ,...,kN i,j 

where Tr 1...u = T r l - . - T r u  denotes the trace for Boltzmann statistics. 
Next, the matrix elements of an ordinary operator are given by 

Akq = (kl A Iq) (2.18) 

whereas the matrix elements of a superoperator S are defined through the 
relation 

( S A ) k q =  2 Skqtk"q"Ak"q" (2.19a) 
k',q" 

or more explicitly (choose A = Ik ' ) ( q ' l )  

Skqqk,,q~ = ( S Lk' ) ( q'l )kq (2.19b) 

In particular, one easily finds 

( LO)kqlk, q, = (~kk,(~ qq,(ek -- eq) (2.20) 

( tV)kqlk' q" = ~ qq' Vkk" - ~kk" Vq,q (2.21) 

where 
k 2 N ki 

(2.22) - -  2.~ ~k - 2m 2m i = 1  

is the kinetic energy of the N particles. 
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For what follows it is very convenient to introduce superoperators 
projecting on special matrix elements in the product state representation. 
First we define the superoperators P and Q projecting on diagonal and 
nondiagonal matrix elements, respectively. We have 

(PA)kk" = Akk"Skk' (2.23) 

with 

( ~ k k '  = [~klk~ " " ' (~RNkN (2.24) 

and Q = 1 - P .  Here, A is an ordinary operator. Obviously one has 

p2 = p,  Q P  = P Q  = 0 (2.25) 

and 

p =_ p1. . .  N = p l  . . .  pN, (UA)k~,  = Akk'6k,kl (2.26) 

These projectors are useful in the case with Boltzmann statistics, as has 
been extensively discussed in I. However, we shall see in the next section 
that for Fermi-Dirac or Bose-Einstein statistics, generalized projectors 
P = P ( 1 . . . N )  and Q = Q ( 1 . . . N )  are relevant for the removal of the 
so-called first divergences (see I and Section 3). They are defined by 

(PA)kk '  = Akk, ~5 {k }. {k'} (2.27) 

and Q =  1 - P ,  where 6~k~,~,~ equals 1 if the sets (k} = {kl ..... ku} and 
(k'} = (k'l,..., k~} are equal and 0 otherwise. We note that this definition 
holds equally for bosons and fermions. Here, too, one finds 

p z  = p,  P Q  = Q P  = 0 (2.28) 

Moreover, we see that 

ps+ ~ .-.Np_~_ p p s +  l . . . u  = ps+ l . . . u f i ( 1 . .  "S) (2.29) 

in particular, 

P P  = P P  = P (2.30) 

For the following it is very convenient to introduce a more explicit 
representation of P(1- . . s )  for s ~ N, which is given by 

/~1 . . . .  = E ~~ . . . .  ~ - 1  (2.31) 
f i e  S s 
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where ~r~ -1 denotes the inverse permutation of n~ (note that r/~ drops out). 
In matrix representation this reads 

(/51 .... A)kk ' =  E (ga lk[ pl .... g~-lA Ik'> =Akk, Y. 6k,~(k',) (2.32) 

where kS= (kl,..., k,) and a (k ' )=  (k'~(1),..., k'~(s)). Now we would like to 
point out that in Z ~ s s  6k,,~(k,s) some terms are counted more than once if, 
for instance, k i=  kj for 1 ~< i<j<~s. This stands in contrast to 6{k~,{k',}, 
where all terms occur only once. Therefore, pl  .... and /5(1 . . .s)  are not 
exactly equal. However, since in the following we only consider matrix 
elements over which a summation Zk',k" is to be performed, the terms with 
e.g., ki = kj give a negligible contribution in the thermodynamic limit (i.e., 
for N, s --. oo with n = N/s finite) as long as s ~ N. Hence, we may write 

pl  .... = P ( 1 - . - s )  for ( 2 ~ o o  andsfini te  (2.33) 

Finally, let us note that, if s ~ N, the foregoing relation is not valid any 
more. This is because the number of equal terms in t31 .... then becomes 
proportional to N and therefore these terms are no longer negligible in the 
thermodynamic limit. 

We conclude this section by briefly discussing the phase-space 
representation ~19) of (super)operators (for details we refer to I). The reason 
for introducing this phase-space representation is first that quantum 
mechanical quantities take a form which is very similar to their classical 
�9 counterparts [this holds, in particular, for the Liouville operator; see, e.g., 
Eqs. (I.2.33), (I.2.31), and (I.34)], and second that the Pq-rule extensively 
used in the following is most easily established in this representation (see 
also Section 4 of I). Now, a phase function APh(x, p), depending on the 
c-number variables x=(x~,...,  XN) and P = ( P l  ..... PN), is defined as the 
Weyl transform of the ordinary operator A, 

APh(x, p) = ~ eik:'Ap+k/Z,p_k/2 (2.34) 
k 

For the product AB one obtains the relation [see (I.2.28)] 

(AB) ph (x, p) = eOAPh(x, p) BPh(x, p) (2.35) 

Here the differential operator D = D(1 .--N) is given by 

1 (0 B0 A 0AoB'~ 
D = ~  \ ~ x ~ p  ~x~p/t (2.36) 
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where ~A/Ox acts on  A ph, etc. A phase operator S vh, which corresponds to 
a superoperator S and which acts on phase functions, is defined by 

(2.37) SPhAPh(x, p ) =  (SA) ph (x, p) 

from which it follows that 

Using Eq. (2.37), one finds, 

and 

($1 $2) ph = SPh S~ h (2.38) 

~19) in particular [see (I.2.30), (I.2.31), (I.2.40)] 

L~ ----- -- --mp '~xx (2.39) 

2)]} 

pph =-~1 f dx (2.41) 

3. I N V E R S I O N  F O R M U L A S  

The objective of this section is to derive new inversion formulas which 
are well suited for the evaluation of the correlation function C(t) first in the 
thermodynamic limit of the system and second for long times t. The 
derivation is based on cluster expansions and on the Pq-rule derived in I. 

To motivate the following procedure, we first perform a "naive" cluster 
expansion of the dynamical part in C(t) (see also I). Since it is more 
convenient to work with the resolvent of e iLt, let us introduce the Laplace 
transform of C(t): 

c(~)  = dt e-~tC(t) ,  e > 0 (3.1) 

where now the small-~ behavior of C(e) determines the long-time behavior 
of C(t). Explicitly, we have from Eq. (2.17) 

U -- 1 
C ( t ) = N  ~ T r l . . . N B 1 P - - ~ f A  i (3.2) 

i = 1  

where we have used Eq. (2.30) and the facts that the N particles are 
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identical and that Bi is diagonal. Now, since PLo = 0, we obtain for the 
resolvent 

i < J  

where we have used the identity 

(3.3) 

1 1 1 1 
+ Y ~  (3.4) 

X - Y  X X X - Y  

The simplest way to obtain the desired cluster expansion 
in the following manner [see also (I.3.9)-(I.3.14)]: 

N 

L = L(ij) + L ( N -  ij) + y" (Lik + Ljk) 
k 

N 

=L(ijk)+ L ( N - i j k ) +  ~ '  (L~z+ Lj,+ Lk,) 
l 

N 

= L(ijkl) + L ( N -  ijkl) + ~ '  (Lim .+ Ljm + Zkm ..~ Ltm) 
m 

is to decompose L 

(3.5) 

(3.6) 

(3.7) 

etc., where L(i . . . j ) ,  1 <<, i,..., j<~ N, obviously is the full Liouville operator 
of the subsystem constituted by the particles i,..., j, and L ( N -  i . . .  j) is the 
full Liouville operator of the subsystem constituted by the remaining par- 
ticles. These two particle groups are connected by the interaction term 
Z ;  N (Lt~ + .-- + L~k), where the prime excludes the indices i ..... j in the 
sum. Making successive use of the decompositions (3.5), (3.6), (3.7), etc., 
and of Eq. (3.4), one obtains, with the help of the relation 

Tr~...j L(i . . .  j )  A = Tr~.. . j[H(i . . .  j), A ] = 0 (3.8) 

the "naive" cluster expansion of C(e) 

C(e) = 1 Trl Bl(f l  AI + Tr2flzA 2) 

, ( •  ) + -  Trx2Bl/SGt2 f12 Ai+Tr3f123A3 

+ --. + l T r l  .... BIffGI .... (f~ .... ~ A i +  Tr~+l f~ .... +1As+l)  
l~ i = l  

+ ... (3.9) 
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where the cluster superoperators GI ..... 2 ~ s ~< N, are defined by 

1 
G12 = ill2 (3.10) 

e- iL(12)  

1 1 
G1 s=iL12 i(L13+ ' e - iL(12) L23) e -  iL(123) 

1 
...i(Lls + '.. + L,_is) (3.11) 

~-iL(1  ...s) 

In deriving Eq. (3.9) we have introduced the reduced density operator 
defined by 

N! 
f l  .... - - -  T r s + l . . . N f  (3.12) 

( N - s ) !  

Now we show that PGI .... is not defined for e--, 0. For  that purpose 
we insert P + Q = 1 into PG1 .... after each resolvent, which yields 

1 
PGI .... = PiLl2 [P(12) + 0(12)]  i(L13 + L23) 

iL(12) 

1 
• [P(123) + Q(123)-] 

- iL(123) 

e - iL (1  ...s) 
[P(1 . . . s ) +  Q(1 . . . s ) ]  (3.13) 

where we have used Eq.(2.29). As regards van Hove's diagonal 
singularity, (2) which occurs in this connection, we refer the interested 
reader to I (pp. 211-215) and ref. 7, where this concept has been 
thoroughly discussed. Since Lo(1 --. k) P(1 .. .  k) = 0, we have 

1 _P(1- . .k)= 1+  i L v ( 1 . . . k )  P ( 1 . . - k )  
e- - iL(1 . . . k )  a - i L ( 1 . . . k )  

(3.14) 

Therefore we see that, for e ~ 0, the part with the largest number of 
_P's in (3.13) diverges (at least) like 1/e s 1, 2<~s<~N. We refer to these 
divergences, which obtain their 1/e factors from the zero-particle free 
resolvent [1/(a-iLo)] P =  ( i / e )P ,  as the first divergences. On the other 
hand, since 

1 O) = (~kk,~qq" 1 
kqlk'q' g_i(ek_eq ) (1 - 6{k}.{q}) (3.15) 
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we recognize that [ 1 / ( e -  iLo)] Q does not give a full 1/e factor in the ther- 
modynamic limit (the contribution of terms with ek = eq for {k} ~ {q} is 
then negligible(7)). Of course, this does not exclude the possibility that 
[ 1 / ( e - i L o ) ]  Q leads to further divergences as e ~ 0  (see, e.g., the second 
divergences of the ring terms (3'4) discussed in I); they are, however, always 
less divergent than the ones coming from [-1/(e-iLo)] P =  (l /e)P.  In this 
connection we would like to point out that the projectors P and Q, which 
have been used for the case with Boltzmann statistics (see I), are not useful 
in the case of Fermi-Dirac or Bose-Einstein statistics considered in this 
work. The reason for this is that in (3.9) there would be nonvanishing 
terms, e.g., of the form (after insertion of P + Q = 1) 

1 1 
- -  Q~PpAi  = -  QTtPpAi (3.16) 
e - iL o e 

which obviously give also a 1/e factor like [ 1 / ( e -  iLo) ] P = (I/e) P, Hence, 
a decomposition with P and Q would not be useful in order to single out 
the first divergences in (3.13), whereas a decomposition with the 
generalized projectors/~ and Q serves this purpose, as Eq. (3.15) shows. In 
particular, we see that the analog of (3.16) yields zero, because Q ~ P = 0  
(or, more generally, Q~P = 0), which follows from/~n = nP and Eqs. (2.28) 
and (2.30). 

After these motivations we now start the actual derivation of the inver- 
sion formulas, in which these first divergences no longer occur. To this end, 
we go back to Eq. (3.2) and transform P [ 1 / ( e - i L ) ]  in the same way as 
was done in I and ref. 7. Making use of P +  Q = 1, (XY)-I = y - 1 x - 1 ,  and 
PQ = 0, one finds 

1 1 
P = p  

e - iL 

= p r o  

( 1 -- iPL[1/ (e  - iQL)]  }(e - iQL) 

1 1 

e - i Q . L  1 - i f i L [ 1 / ( e -  iQL)]  

1 
= P  (3.17) 

e - iePL[ 1/(e - iOL)]  

By virtue of the identity 

P 
1 

1 - iPL[  1/(e - i Q L ) ] ( P  + Q) 

= P l _ i P L [ 1 / ( e _ i ~ L ) ]  p I + i P L e _ - ~ Q  (3.18) 
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where we have used Eq. (3.4) and QP = 0, we finally arrive at 

p l 1 p p ( l  +iPL 1 ) 
~_iL=e_isPLv[1/(e_iOL)] v ~ O  (3.19) 

Now the first divergences have been resummed in the denominator on the 
rhs of the foregoing equation. Next we show (see also I) that, when 
Eq. (3.19) is inserted into (3.2), this denominator can be replaced by a one- 
particle superoperator (cf. Eq. (3.45) below). To begin with, we rewrite 
Eq. (3.19) in the form 

p l _ i P L v  1 1 ! ( 1 ) 
e - iL ~ ff ~ - iL + p 1 + iffLv ~ Q (3.20) 

By applying both sides to f ~ = ~  A~ and by taking the trace Tr2... N on 
both sides, we are left with 

_ 1 _ 1 N 
~l(e) = T r 2 . . . ~ v i P L v ~  Pf e - - ~  ~ Ai 

i = 1  

N 0 N 
1 (1 + e - iQL + ~  Tr2... P PiLv 1_ ) f  ~ l A  ~ (3.21) 

with 

I~1 . . . .  (~) := (N_s)----~.Tr~+l...uPf ~ Ai (3.22) 
i = 1  

where we have used the fact that LfZ~A~=fL Z~ A~. By making use of 
Eqs. (2.29), (2.33), and (2.31) and the relation ~ f = f ,  we may rewrite 
~ 1  . . . .  (/~) in the useful form 

N !  ~1 .... Tr,+l P 1 ~ Ai (3.23) 
~l  .... ( e ) = ( N _ s ) !  ...N Y'~_-"S~ i=1 

We now consider the first term on the rhs of Eq. (3.21) in more detail. By 
performing the same cluster expansion as the one leading to Eq. (3.9) (the 
presence of the Q's has no influence), we obtain here 

1 _ 1 
Tr2 N iPLv e/Z_-77Z Z A, 

1 
Tr2.. /~(1 .--s) G~...sP(1-..s) ~1 . . . .  (/~) 

S -s 
s = 2  

(3.24) 

822/54/3-4-14 
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with 

1 ~ 1  " . . s  
1 1 

:=  iLa2 iQ(12)(L13 -J- L23 ) ) iQ(123) 
e - iQ(12) L(12) e - iQ(123) L(123 

1 
- - . i Q ( 1 - - . s -  1 ) ( L , , +  .-. + L , _ , ~ )  e - i Q ( 1 . - - s )  L ( 1 . . - s )  

(3.25) 

Let us go back to time space for a moment  and split ~bt .... (t) into two 
parts, 

~b~ .... ( t ) = n  ~ .... (P l'i -~- i~ 2 (3.26) 
i 1 

with 

N~ 
PfeiLtA. 1 <~ i <~ s (3.27) ~ l . i =  Trs+l  . . . N  . . ' '  t ,  

(N-s ) !  

N~ 
pfeiL'A (3.28) q~2= Trs+~...N j,  ~+1 

( N - s - l ) !  

Next  we perform a cluster expansion for e ~Lt. Explicitly, we have 

N 

e 'ct= ~ ~ U(II)... U(I,) (3.29) 
l = 1 Ii ,...,Ii 

where I1 w .-. w I t =  {1,..., N}, I i~I j= ~ ,  and U(I) - 1 if I =  ~ .  Inserting 
this cluster expansion into q~'~ and taking into account  that  U(I)A~ = 0 if 
II1 >/2 and i•L we obtain 

q51'i= ~ ~ Tri~Pfl .... ~U(idiIa) Ai (3.30) 
Ji  d>~O 

where Ia={s+l, . . . ,s+d} ( Ia=~  for d = 0 )  and J i c { 1  ..... s} \{i} .  
Similarly, we perform the usual cluster expansion for the reduced density 
opera tor  

s + d  

f l  .... t,~ = 2 E gl t '"gI i  (3.31) 
1 = 1 11 ,...,It 

where the nota t ion is analogous to the one introduced in Eq. (3.29). This 
can be rewritten in a more appropria te  form as 

f l  . . . .  i d = f i i d  ~ f ~ + g ( l l . . . l i - - l l i l d l i + l l . . . l s  ) (3.32) 
j (  ~ i) 
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Here, the cluster operator g connects (by Vkt or/and ~kl) any particle(s) 
from ila with any particle(s) from {1 ..... s}\  {i} or two (or more) particles 
from {1 ..... s}\{i} with one another. Inserting this cluster decomposition 
into Eq. (3.30) and going over to the phase space representation, we then 
obtain with Eq. (2.35) 

Z Z PPhe  a .... 
Ji d>~O Ps+l,...,Ps+d 

x f ld (I f j+x  V(iSilJhA /h (3.33t 
j (  e i) 

Now, due to the cluster property of gph and U ph (see I), we see with 
Eq. (2.41) and f~ = P ~  (due to the translational invariance) that the terms 
with g's or/and J~ r ~ are smaller at least by a factor s compared to 
the other terms. Thus, by going back to the operator representation and 
retaining only the leading contributions, we have 

~1,i= ~ Trod P i5[ fjf.zdU(iia) A ~ for 0-- .0o (3.34) 
d>~O j ( ~ i )  

Then, using the relation 

N! 
Lid= ( N - d -  1)! Tru-it~f(l'" .N) 

( N - s +  1)! 
Yr~+a+~..Nf(is+l...N) for ~ o o  (3.35) 

( N -  s - d)! 

which holds for l<<.i<~s~N, we eventually find, with U(I)A~=O, if 
ir ~>2), 

q~a=NP' .... (-I fjTrN-~PfeiL'A~ for g?~oo  (3.36) 
j( ~ i) 

We note that p1 .... can be omitted in the foregoing expression, for fj  is 
diagonal (i.e., f j  = P~) .  

Next we transform q~2 in a similar way. Substituting for e ~Lr its cluster 
expansion into (3.28), we obtain [again with U(I) A~+~=O if 
s + l r  [11)2] 

e2 = ~ Tr/d Pfl .... id 2 U(iJ, Ia) + U(Ia) A~ +~ (3.37) 
d>~ l i 1 Ji 

where Ia and J~ are the same sets as in Eq. (3.30). By replacing f by the 
cluster expansion (3.32), the first term in the braces of the foregoing 
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equation can be treated as above. For the second term we substitute for f 
the following cluster expansion [being an alternative form of Eq. (3.31)] 

f l  .... & = f l  .... fld+ ~ g(ilZd) (I f j + g ( 1 . . . s l l a )  (3.38) 
i =  I j ( ~ i )  

where g connects any particle(s) from Id with particle i, and g contains the 
remaining terms. Using the same arguments as above for ~1,i, one finds 

~2= ~ p (-I fJ ~ Trl~{Jil~U(ila)+g(i[Ia)U(Ia)} a~+l 
i= 1 j ( # i )  d>~ 1 

+Pfl .... ~ Trl~ftaU(Ia) As+l for s (3.39) 

With the help of Eq. (3.35) we see, however, that the last term vanishes, 
since 

Trs+I...Nf(S+I...N) eiL(~+I"N)tAs+~(As+I)=O (3.40) 

For the same reason we can replace g(illd) by fizz, since obviously 
g(illa) = fiza-fif~a. Hence, after some manipulations, we are left with 

~2=g PI .... fjTru_~Pfe 'Lt ~ Ak for f 2 ~ c o  (3.41) 
i= 1 j(v~i) k ( # i )  

Combining this result for ~b 2 together with q~t'~ given in Eq. (3.36), we find 
from (3.26) the factorization formula 

qSa .... ( e )=~ i  .... p~ .... ~ o~i(~)f2""f~ for ( 2 ~  (3.42) 

Here, we have introduced the permutation superoperator a,7 defined by 

o u A ( 1 . . . i - - . j . . . N ) = A ( 1 . . . j . . - i . . . N )  (3.43) 

where A is an ordinary operator. Now, we insert this result for q~l .... (~) 
back into Eq. (3.24) and solve Eq. (3.21) for N 1~1(e ). Then, after some 
simple manipulations, the Laplace transform of the correlation function 
C(t) [defined in (2.4)] takes the final form 

1 
C(g) = Tr 1 B 1 

e -- e ~2~=2 Tr2 .... P1(~1 .... 7r 1 .... p ~s= t O ' l i f2""  "f,  

xNTrz,..NP I + i P L v ~ Q  f A~ for ~ o o  
i = l  

(3.44) 
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where G~ .... is given in Eq. (3.25) In Appendix A we show that the 
foregoing result can be brought to the following equivalent but more 
compact form: 

c(~) = 

1 
Tr~ B1 

e - e N  Tr2... Ni f iL  v[  t/(E -- i Q L ) ]  f i f (1  + N a  12)(fl + Trk f l k  alk)  -- 1 

xNTr2 . . . u /5  I + i P L v ~ Q  f ( l + N a 1 2 ) A ~  for O ~  

(3.45) 

Let us make some remarks on the inversion formulas (3.44) and 
(3.45), respectively, which represent the main result of this work. First, we 
note that these formulas, which are exact ifi the thermodynamic limit, have 
been derived for a translationally invariant and short-range potential and 
hold for systems obeying Bose-Einstein or Fermi-Dirac statistics. 
Although Eqs. (3.44) and (3.45) are valid for all e > 0, they are especially 
suited as starting points for the evaluation of C(e) in the limit e ~ 0. This is 
because the most divergent terms as ~ --* 0, namely the first divergences, no 
longer occur due to the action of the O's in G1 .... and ( ~ - i O L )  -1  (see the 
discussion at the outset of this section). In this connection, it is worth 
noting that only the Q's in the numerator of G1 .... must be retained, 
whereas the Q's in the denominator of G~ .... can be replaced by 1, since 
there the/5 part in O = 1 - / 5  leads to a negligible contribution in the ther- 
modynamic limit due to the Pq-rule established in I (see also Appendix B). 
Moreover, in Appendix B we show that, after some simple manipulations, 
GI .... ~1 .... A (where A is a symmetric operator) can be brought to a very 
convenient form, where all remaining Q's are replaced by the simpler 
projectors Q. Explicitly, one finds 

1 1 
7 ~r I .... A ----- i ff '12 iQ12(E13 +/,23 +/,12,3) iQ 123 

1 . . . .  e - i L ( 1 2 )  iL(123) g 

1 
x (E14 +/~'24 + f'34 + E12,4 + E13,4 + L23,4) e - iL(1234) 

1 
x .. iQ~ . . . . .  1 

e - i L ( 1  . . . s -  1) 

iQ 1234 

x ( E l s +  + / ` s _ l s +  ~ 1 ) 1 (3.46) 
""  . . E i : '~  ~ - i L ( 1 . . . s )  

l < J  
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where the new Liouville operators are defined by 

EijA = [ Vo, A] ,  ~'u = Vo(1 + rcij) (3.47) 

[~u.~A = (rCik + 7zjk ) VuA - A V~(~ik + 7tjk ) (3.48) 

Starting from the inversion formula (3.44) and the preceding representation 
for GI ..... it is a straightforward matter to derive the Boltzmann equation 
value of C(s) for s ~ 0, as we shall demonstrate in Section 4. 

As regards the small-e behavior of C(s), we point out that further 
divergences (due to, e.g., the ring terms r appear in C, .... for s>~ 3 (4) in 
2 (3) dimensions as s ~ 0, as we know from the classical case (3'4) or from 
the semiclassical case with Boltzmann statistics, (') which is obtained by 
replacing rc by 1 and P by P everywhere in the formulas (3.44) and (3.45). 
Whether these ring terms are the next leading divergences or whether there 
are equally or more divergent terms (as one should expect from the 
discussion of the Lorentz gas (s)) needs further investigation. 

Finally, we remark thaL for large systems, the reduced distribution 
operator f l  ..... defined in the canonical ensemble, can be replaced by the 
grand canonical reduced distribution operator nl .... . The latter is defined 
by 

N] 
nl .... = ~' ( N - S ) !  Tr~+I""NTrPG (3.49) 

N>~s 

with 

pG=Z~, e fl(H-#N), ZG= ~ eflNI~ZN (3.50) 
N>~O 

where/~ is the chemical potential. Making use of the second quantization 
formalism, it is not difficult to obtain an explicit representation especially 
of the unperturbed (i.e., V = 0 )  reduced distribution operator n o .... . First 
we note the well-known relation 

<k'~...k'~l n~ .... I k ~ - . . L ) =  < ' ~ ' " a  § " "  ksak~ ak,l ) G (3.51) 

where a~- (ak) is a creation (annihilation) operator satisfying the usual 
commutation relations for bosons or anticommutation relations for 
fermions. The expectation value on the rhs of Eq. (3.51) is to be evaluated 
with PG in the Fock space. Setting V = 0  in Eq. (3.51) and using Wick's 
theorem for time-independent operators, one obtains 

nO .... = 7rl .... nlo...nsO (3.52) 
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Here, n o is the momentum distribution operator for free bosons (r/= 1) or 
fermions (q = - 1), 

n o = (e~E,o~i)-,01 _ rl)-I (3.53) 

where #o is the unperturbed chemical potential. 
For the sake of completeness, however, let us finally show that 

Eq. (3.52) (which can be regarded as Wick's theorem in operator form) 
together with Eq. (3.53) may be derived completely within the canonical 
ensemble formalism. First, noting that fo  .... =_P(1---s) fo  .... and making 
use of Eqs. (2.33), (2.31), and (3.31) and the Pq-rule, one immediately finds 

fo  .... = ~1 . . . 7o . . . f o  + 0(1/s (3.54) 

In Appendix C we derive the exact formula 

1 

= {  Z ~  e~4~ { 1 - r l ( f ~ 1 7 6  (3.55) f~  \ZO_ ,  

which holds for all' N > I .  Here, f ~  1 (=fo)  and the unperturbed 
partition function Z ~ belong to the N-particle system, whereas f ~ [ N - 1 ]  
and Z~ ~ belong to the ( N -  1)-particle system. Since 

0 0 
Z N / Z N  1 = e ~o + O(O#o/~N ) 

where C3#o/~3N~ N -1, a s  is well known from thermodynamics, and since, 
with ~3f~ f~ 1 - f ~  11"~N -1 [which is a 
special case of Eq. (3.35)1, Eq. (3.55) reduces to the expected result 

f o  = n o + O(1/g2) (3.56) 

4. B I N A R Y  COLLIS ION A P P R O X I M A T I O N  

To illustrate the utility of the formalism derived in the previous sec- 
tions, the binary collision approximation of the inversion formula (3.44) for 
e ~ 0 will be considered in the following. In particular, this means that we 
shall obtain the Boltzmann equation value of the time-integrated 
correlation function C(t), where the linearized Boltzmann collision 
operator is given with the full (exchange modified) scattering cross section. 
A further reason for deriving this known result (9) with the help of the 
present formalism is to exhibit clearly some important differences between 
the semiclassical case with Boltzmann statistics (as treated in I) and the 
quantum statistical case considered here. 
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To begin with, we introduce the notation 

dt C(t) C= lim C(~)= (4.1) 
~ 0  + 

and write for the inversion formula (3.44) 

C= lim T r l B I - - N T r 2 . . . N P  I + i P L v - - O  f Ai (4.2) 
- -  i = l  

Here the superoperator ~1(~) = p1~1(~ ) p1 is defined by 

~ l (e )Xl=~  ~ Tr2 .... P~ .... G1 .... ~1 .... ~ al~Xtf2...f~ (4.3) 
s = 2  i = 1  

where X1 is an arbitrary diagonal one-particle operator (i.e., P~X1 =XI). 
For the further evaluation of 91 it is very convenient to rewrite (4.3) in a 
more symmetric form. By means of the identity 

~ a l i X l f 2 " " f s = ~ - ~ x  ~l '"~s  (4.4) 
i = l  = 0  

where 

~im fi-3ff ~Xi ( 4 , 5 )  

one has 

D~(e)=e ~ Tr2 .... P' .... G, .... g,- . .s f , . . . fs  (4.6) 
S = 2  

with 

~1(~) x ,  = D~(~) (4.7) 
U ~  2 = 0  

Up to this point everything is exact. To obtain the binary collision 
approximation, we now retain only those terms in G~ .... [see Eq. (3.46)] 
and in D~, respectively, which involve at most two particles. The decisive 
point now is to realize that the Liouville operator/5~,k, which apparently 
depends on three particles, can reduce to a two-particle operator in special 
cases. By using the identity 

Trs~ o = r/ (4.8) 
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one finds, 

with 

for instance, 

Tr~ L~ ,k~A  o. - L~Aij (k g= i, j )  (4.9) 

L~A o = q()7o +)7o) VoA ~ - qA o V~()7 ~ +)7o) (4.10) 

where)T~ is the unperturbed value o f ~  and Aij is an arbitrary two-particle 
operator. On the other hand, a term, e.g., of the form Tr~ LO.k)TkVik 
obviously cannot be reduced to a two-particle operator. Taking this fact 
into account, one immediately convinces oneself that in the binary collision 
approximation only the Liouville operators Eqz,/]lz.t (3 <~l<~s), and L~2 
have to be retained in Eq. (3.46). In addition, ~ can be replaced by )7o in 
this approximation. Hence, Eq. (4.6) takes the form 

D~.(e) = e ~ p1Tr  2 .... lL128_iL(12)''- IQ12-L12, 3 1 
,=2 e -- iL(12) 

1 1 
i t 012~  o o 12,se_iL(12))71 .... )7s + MC (4.11) e - iL (12 )  

where the multiple collision term MC contains all irreducible contributions 
which involve more than two particles. Next, noting that the Q's can be 
omitted in the preceding equation due to the Pq-rule and making use of 
Eq. (4.9), one can perform the summation over s explicitly and obtain 

D ~ ( e ) = ~ ( e ) ) 7 ~ + M C  (4.12) 

Here, the superoperator ~-(e)  = PlM~l(e ) p1 is defined by 

~,~(8)  = T~ iO12@,~ D1270 
- - x x  2 i a 1 2  x J 2  (4.13) 

where f'~2 is the exchange-modified Liouville T-matrix 

;. _ _lEa 2 1 T~2 - [~ - iLo(12)] (4.14) 
e -- is 

with 

s  = L(12) +/~12 (4.15) 

In Appendix D, it is shown that ~ = l i m ~ o + ~ ( e )  represents the 
Boltzmann collision operator with the full scattering cross section, where 
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the relative occupancy of the intermediate states has been taken into 
account by the factor (1 + ~/fo + )/.,7o). Explicitly, we find there 

2 0 
( ~ l ? l ) k l k l  "~" -4TC E I [il2(~kl "3v ~k2 ; /~) �89 dv ~12)-]kl k2;kl k2 [ 2 

X 6(Gkl + Gk2- (~k'~- (~k'2) {J~O'iJ~02(l -~- ~'/?01)(I q- t/?O 2) 

- (I + r/f~ + r/f~ ~o ) (4.16) 

where ST~,=(f~ etc., and where the t-matrix fi~(E;~.)= 
lim~ ~ o+ fi~(E-i8;  2) is given by 

f i~ (E-  i8; 2) = V12 
e -  i [ / t~ (12) -  E]  

{~ - i [ H o ( 1 2 )  - E ]  } (4 .17)  

with 

/4~(12) = Ho(12) + V~2(1 + t/~ ~ + ~/~o) (4.18) 

Next, to obtain ~IXI :~--lim~oN~(e)X1 we take the derivative of 
lim~_o O~(e)=~f~ MC with respect to 2 [see Eqs. (4.7) and (4.12)]. 
Since in Eq. (4.16) for ~ = 0 the terms in the braces cancel due to energy 
conservation, only the derivative of the f ' s  in the braces has to be 
calculated. Using again the relation 

Jkl)co Sk2~'4"0 ta + qfo )(1 + t / fo)  = (1 + r/f~ + t/f~ fk'~O f%o 

which holds on the energy shell, one then finds after some simple algebra 

91 X1 "~" ~ 1 X t  "4- M C  

where ~ = (0/62)[;,=o ~ ; .  Explicitly, 

where 

(4.19) 

I 1 _~_ n 12)] 2 ('~1X1)k,k, = - 4 ~  E i12(Skl q- 8k2) ~ ( 1 
k2, k'l,k' 2 -Ikl k2;k I k'2[ 

X (~(Gkl "~ 8k2-  Gk; -- 8k2)( I -~- qf~t)( 1 + qf~2) 

x f~176 + Xk2- )(k',- Xk~} (4.20) 

Xk 1 ~_ ( ,~l)klkl = Xkl [(1 ~_ r/f01)fo] - ,  

etc., and/~-2(E) = fi-z(E; 2 = 0). Evidently, ~31 represents the linearized quan- 
tum statistical Boltzmann collision operator with the full (exchange- 
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modified) cross section, as was first obtained by Boercker and Dufty. (9)'3 
We point out that the i-matrix and therefore the scattering cross section in 
~1 are now functionals of the Fermi or Bose distribution. 

To obtain the final result for C, we return to Eq. (4.2) and write 

where 

1 
C =  lim Tr I B t A 1 (4.21) 

a - ~ 0  + ( 1 / ~ 1 ) [ - ~  - -  ~ 1 ( 8 ) ]  

Jgl=NTr2. . .x  P l + i P L v ~ O  ali (4.22) 
�9 E 1 

Now, since ~ l (e )=9~t (~)+  MC, it is obvious that in J///t only the terms 
involving one particle at most have to be retained in the binary collision 
approximation. Thus, the second term in the parentheses in ~t' 1 can be 
omitted in this approximation, because this term involves at least two par- 
ticles due to the presence of L v. In contrast to this, the first term in Jgt 
contains a one-particle contribution, which we extract as follows. First we 
note that, with f12=f l f2+gt2  and Eq.(2.5), Tr2f12A2 reduces to 

0 0 Tr 2 ga2A 2. Then, using the fact that only the cluster g~ 2 = 7~t2fl f2  (which 
occurs in gt2) can contribute in the considered approximation, we find, 
with Tr2 zc~z = q, 

N 

NTr2---NPf 2 A i = p I A t f ~  1 "k-t'/f ~  (4.23) 
i = t  

and consequently 

,/1/11 At = PtA~ f~  + r f  ~ + BC (4.24) 

where BC contains the terms involving more than one particle. Therefore, 
the binary collision approximation of the time-integrated correlation 
function C finally reads 

1 
C =  lira TrlBt---------~-Alf~176 (4.25) 

8 ~ 0  + 

where now Pa has been omitted because B1 and f0  are diagonal. 
We conclude this section with some remarks. As is evident from the 

above derivation, the presence of the permutation operator n t .... makes 
the explicit evaluation of d t  .... more complicated in comparison to the 

For a discussion of this Lmatrix see also ref. 10. 
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semiclassical case. There, the derivation of the tinearized Boltzmann 
collision operator is quite straightforward, because only G~2 must be taken 
into account, as one can see, e.g., from Eq.(4.11). In the quantum 
statistical case, however, one has to resum all two-particle contributions 
contained in G~2, G 1 2 3 ,  etc., in order to obtain the full cross section, which, 
as a consequence of this resummation, is now a functional of the reduced 
distribution operator fo. Despite this complication, let us point out, 
however, that the above result, Eq. (4.22), has been obtained in a direct 
and clear manner, being a great advantage of the formalism developed 
here. Due to this fact, it is possible to discuss the triple, quadruple, etc., 
collision terms (coming from the dynamical part) in an analogous way, as 
will be shown in a subsequent work. 

Finally, we remark that in the course of the above derivation the 
Boltzmann collision operator ~ has been obtained [see Eq. (4.16)]. This 
suggests that similar methods, leading to the inversion formula (3.44), can 
be used to derive the nonlinear quantum statistical Boltzmann equation 
(Uehling-Uhlenbeck equation (~7) with degeneracy-modified t-matrix) in the 
binary collision approximation, and, moreover, the quantum statistical ver- 
sion of the Choh-Uhlenbeck equation in the triple collision approximation. 
This is indeed the case and will be demonstrated in a subsequent paper. 

A P P E N D I X  A 

In this appendix we derive formula (3.45). For that purpose, let us go 
back to Eq. (3.24) and abbreviate its lhs by D. Then, using Eq. (3.42), we 
obtain 

D = ~  ~ Tr2 .... PGt . . . .  "I~ 1 . . . .  p1  . . . .  Crlifl)lf2...f s (A.1) 
s = 2  i = 1  

Next we replace ~[Jl by the identity 
N 

q~l=NTr2. .Nf  ~ a l i f ~ - ~ l = ( ~ l + T r k f i k f ~ l ~ k ) ,  k > l  (A.2) 
i = i  

where ( )1 
~1 = NTr2,. .Nf ai i f~ ~ ~ (A.3) 

i = 1  

This leads to 

1 ~ Tr2 .... PG1 .8~' .... P' .... ( f ,  ~ f ; - ~ i  O = ~  . . . . . .  
8 = 2  t ' = i  

+ ~ G,,f~ .... Vr,<A,~f;'lk), k > s  (A.4) 
i = 1  
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where we have used the fact that P f l  f s  = Pfl .... f l  + O(1/12)]. (only the 
leading terms for/2 ~ oo are retained). Now we transform the second term 
in the parentheses in Eq. (A.4), which we abbreviate by (~) for the moment. 
Since f,-k = f~fk + gig and Trx~g = 0 (see below), we find 

(~) = P T r k  ~ alif2 .... glkf k-l--q5 k (A.5) 
i= l  

Further, taking account of the cluster expansion (3.31), it is not difficult to 
see that 

P( f t  .... fk+ ~ a,if2 .... gak)=Pfl .... k[l+O(1/(2)] (A.6) 
i= l  

Hence, 

(2) = P Trk fl --.,kfk l'~k (A.7) 

Inserting this result back into Eq. (A.4), one gets, with Eq. (3.12), 

1 z_.X~ N! ' f  N D=~Tr2...NP (N_s)-"~.G1 . . . .  p l . .  E O ' l i f l  1~1 (A.8) 
s=2 i=1 

where we have used ~-lf=f. Replacing pl  .... by _P(1 .--s) and using the 
identity P" +1... up(1 .-. s ) =  ps+ 1... up, we see that the sum in (A.8) can be 
performed to yield 

1 u 
D = Trz...N P i L v ~  Pf~=l o1'f{1~1 (A.9) 

Substituting the foregoing result into Eq. (3.21 ) and solving for N -  1~1(e), 
one finally arrives at formula (3.45). 

To complete the derivation, we eventually show that Trk q3k=0. 
Making use of the identity (3.4), one finds from Eq. (A.3) 

Trk ~ k = T r k  qbk--Tr~tfklfYlakl( 1 +TrjfkjfTlakj) -1 q~k (A.10) 

The first term vanishes due to Eqs. (3.22) and (2.5). The second term can 
be transformed to give ( N - 1 ) T r k  ~k, which immediately leads to the 
desired result. 

A P P E N D I X  B 

In this appendix we derive Eq. (3.46). To begin with, we note the 
obvious relations 

L(1 . . .s)  ~1 .... A =Tr I .... L(1 -..s) A 
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and 
s--1 s--I 
2 Lis ~1 . . . . .  1A = 7~1 . . . . .  1 2 Lis A 

i=1 i=1 

for a symmetric operator A. With 

0(1---s)  r~ 1 .... =zt 1 .... Q(1 . . . s )  

and Eq. (2.16) one then finds for G1 .... given in Eq. (3.25) 

G 1 ...s ~1 ""s A 

1 1 
= iLx2 e - iQ12L(12) iQ12(L13 + L23)(1 + 7t13 + 7z23) e - iQ123L(123) 

1 
"" E_iO1 . . . . .  1L( 1 . . . s _ l )  i01 . . . . .  I(L,~ + . . . - k L s _ l s  ) 

1 
x ( l + z l ~ +  "'" +rts - l s )  _ i 0 1  .... L(1.- -s)  (B.1) 

where /~12 is defined in Eq. (3.47). Replacing in the denominators of the 
foregoing expression all 01 .... by 1-151 .... , we see that these Q's can be 
replaced by 1 for t2 ~ oo due to the Pq-rule (1) (the presence of zr~ in/5~ .... 
has no influence). The Q's in the numerator can be transformed as follows. 
First we note that 

7~1 .... 101 . . . . .  1=7~1 . . . . .  l ( l _ p 1  . . . . .  17~1 . . . . .  1) 

Since in (B.1) to the left of Q1 .... -1 the particles 1,..., s - 1  are connected 
by L, 7, p1 . . . . .  lr~1 . . . . .  1 can be replaced by p1 . . . . .  1+ O(O-1) again due to 
the Pq-rule [note that ~p.h= (2~)3 6 ( p i - p j ) 6 ( x i - x j )  and therefore, e.g., 

lj p h  --1 --l---s--1 1--.s--1 (P re0. ) f2 ]. Hence Q can be replaced by Q for f2 Go. 
Proceeding in this way from the right to the left in (B.1), we see that the 
Q's in the numerator may be replaced by Q. 

Finally, using the relation 

(L13~23 -t- L23~13 ) A = ff_,12,3 A (B.2) 

where/512.3 is defined in Eq. (3.48), one easily proves by induction 

s--1 ( s~ l  ) Qs 1 s~l  ) 
Li~ 1+ rcis A =  Eel+ E~,s A, s>>.2 (B.3) 

i~l  i=1 i 1 i<j 

Insertion of (B.3) into Eq. (B.1) immediately yields Eq. (3.46). 
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APPENDIX C 

In this appendix we derive formula (3.55). Due to the definition (3.12), 
fo  =__ f o [ u  ] reads 

N 
f ~  = Z'--~N Tr[u 1] reiN] e -[IH~ (C.1) 

where [ N - i . . . j ] =  {1 ..... N}\{i , . . . , j} ,  rc[N]=(1/W!)rc x N ,  H o [ N ] =  
Ho(1 .--N), and 

Z ~ = Tr[N ] u [N]  e -~H~ (C.2) 

Next we note that u [N]  can be represented as 

1 
n[N]  = ~ (1 + rc12 + --. GIN) n [N- -  1 ] (C.3) 

where 
1 ~ [ N - 1 ] =  ,/~2 --- N 

(N-- 1)! 

Insertion of Eq. (C.3) into Eq. (C.I) then yields 

1 
f ~  u ]  = Z--VN {Tr[u-11 u [U- -  1] e -fill~ l]e-flH~ 

+ ( N - 1 ) Y r [ u _ 1 ] ~ 1 2 ~ [ N - l J e  -~H~ } (C.4) 

The first term in the braces is equal to Z ~  e-~n~176 Then, by using the 
identities 

/r - 1] = u [ N - 2 ]  ~12, ~12 e-fill~ =e--flH~176 

and Tr2 ~12 = t/, one immediately finds for the second term 

q(N--  1 ) Yr[N_ 12] r e i N -  2] e flHo[N--2]e--flH~ (C.5) 

which, due to (C.1), is equal to 

rl Z ~  i f ~  - 1] e -~u~ (C.6) 

Hence, we have 

f ~  = Z~ e-~U~ + t l f~  1 ]) 
z o 

(C.7) 
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Adding and subtracting the term q f ~  in the parentheses and then 
solving the resulting equation for f ~  one finally arrives at formula 
(3.55). 

A P P E N D I X  D 

In this last appendix we express the Liouville T-matrix T~2 (in the 
following we suppress the explicit indication of the 2dependence) by 
ordinary Hilbert-space t-matrices and derive Eq. (4.16). The following 
treatment generalizes the one given in Appendix A of I. We start by 
introducing some abbreviations: 

L=L(12)  (D.1) 

121= Ho + SVI2 ,  Ho = Ho(12) (D.2) 

S=  1 + r/j~~ + r/j 7~ (D.3) 

Since (.,7o)+ =)7o, one has l l +  = H o +  V12S. Now we note the identity 

[exp(is A = [exp(illt)] A exp( - i l l+ t )  (D.4) 

which is easily established by showing that both sides obey the same 
differential equation (the initial values are obviously equal). It then follows 
that 

1 fo o 2~ - i s  A = dt [exp(-2et)  exp(illt)] A exp( - i l l+ t )  (D.5) 

Making use of the relations 

e -  2et ~ e -  et fo  t~ 

and 

dt' 6( t  - t ') e - d ,  t > 0 (D.6) 

6 ( 0  = -~n dE  e - W '  (D.7) 
--oo 

one finds 

2~ - i s  A = - -  oo dE  e - i ( I2 I -  E )  e + i ( l l  § - E )  

Then, introducing the exchange-modified Hilbert-space t-matrix, 

1 
i ~ ( E -  ) = V,z  [~ - i ( H  o - E)] (D.9) 

- i ( l l -  E )  
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where E • = E _  iE, one obtains (after one iteration) 

[ 1 E) iS,  L2(E ) ] 1 1 - 1+  
e - i(ISI- E) e -- i(H o -- ~ -- i(H o - E) 

and 

where 

(D.10) 

e + i(I?I + - E) 
l [ 1 - i ~ ( E +  1 1 

e + i ( H o - E )  ) i S e + i ( H o _ E  i (D.11) 

i~2(E + ) = F i~(E-  )] + 

Thus, it follows from Eq. (D.8) that 

L12 

1 
X 

e -- i(Ho - E) 

Then, for A = P12B, one finds 

2~ 
lim P12Ll2 . P12B 
~ o+ 2~ -- iL 

2~_ is A = ~--~ _~  dE 

{ 1 1 
• i~2(E-)~ i ( H o - E )  A - ~ + i ( H  o - -  E )  

•  1 ] 
+ i(Ho -- E) 

F 1 iSi~2(E- )1 1 
L ~ -- i(Ho -- E) 

, } A i ~ ( E  + ) 
+ i(Ho -- E) 

f 
oo 

= 27z dE p12 

x [ ~ ( E ) - -  i~(E)]  ~ 6(Ho - E) p12B 

- i~ (E)  6(Ho - E)(P'2B) i~ (E)  iS 6(Ho - E)} 

where i ~ ( E ) =  l im~o+ [~2(E+ ie). Next, we note that 

i~2(E-) - i ~ ( E  +) = V~2 1 + iSV12 
- i(I2I-- E) 

- ( 1 - i S  1 ) V12 
+ i(/-I + -- E) 

(D.12) 

(D.13) 

(D.14) 

(D.15) 

822/54/3-4-15 
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from which the generalized optical theorem follows {note that 
iS[8 + i(I2I + - E)] -1 = [8 + i ( / 1 -  E)]  -1 iS}, i.e., 

i12(E- ) - i ~ ( E  + ) = i12(E- ) iS 
28 

~2+ ( H o _  E)2 i~2(E+ ) (D.16) 

Therefore, Eq. (D.14) reduces to 

1 
lim p I 2 L 1 2  " p 1 2 B  

-~ o+ 28 - is 

f 
og 

= - 2~i dE P12i~(E) 6(Ho - E) 

• { (P12B) i+(E)  S -  S i~ (E) (p12B)}  6(Ho - E) (D.17) 

0 0 Now, setting B = ? ~  v~ and noting that S =  (1 + qS~~ + r / f ~  we 
arrive at 

28 12 0 0 lim iPa2L12 ~ P "~1f2 
~ o + 2 8  - i L  

f 
oo 

= 2re dE p12i{2(E ) 6(Ho - E) 
- -  ~'Y,3 

• 1 + 1 + 

~+ 0 0 - ( 1  + r/jr~ + t / f  ~ t12(E)jTlj72} 6 ( H o - E )  (9.18) 

Finally, to obtain PI2f'12p12, we note that the same derivation leading to 
Eq. (D.18) goes through if we replace V12 by V12(1 +z~12)/2. Since 
[�89 + n12)]" =�89 +rc12 ) for all n>~ 1, we see that in Eq. (D.18), f~2 has to 
be replaced by f~(1 +zt12)/2. Therefore, by taking matrix elements of 
(D.18) and using that (i~) + = i~,  we obtain 

12 ^ 12 0 0 
lim (P T12P ? l ? 2 ) k l k 2 ; k l k  2 

e ~ O  + 

1 zq2)] klk2; k'~k~ 2 
= 4Zt ~ [-i12(ekt+ek2)~(l+ 

X ~(Skl  -'1- 8k2 --.Sk~ - -  ~k2 ) { ? 0 '  1 ? 0 ' 2 (  1 -~- ~]?01 )( 1 + t/j~~ 

- ( 1  + r/f~ + t l f~176 f~  (D.19) 

which immediately leads to Eq. (4.16). 
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